V2 无声的和谐 声望 8 生物信息技术 2022-01-24 12:00:31 上传
Rheology of the Active Cell Cortex in Mitosis
Abstract The cell cortex is a key structure for the regulation of cell shape and tissue organization. To reach a better understanding of the mechanics and dynamics of the cortex, we study here HeLa cells in mitosis as a simple model system. In our assay, single rounded cells are dynamically compressed between two parallel plates. Our measurements indicate that the cortical layer is the dominant mechanical element in mitosis as opposed to the cytoplasmic interior. To characterize the time-dependent rheological response, we extract a complex elastic modulus that characterizes the resistance of the cortex against area dilation. In this way, we present a rheological characterization of the cortical actomyosin network in the linear regime. Furthermore, we investigate the influence of actin cross linkers and the impact of active prestress on rheological behavior. Notably, we find that cell mechanics values in mitosis are captured by a simple rheological model characterized by a single timescale on the order of 10 s, which marks the onset of fluidity in the system.
V1 Blaine 声望 1 生物信息学 2022-01-24 11:51:49 上传
A Kinetic Model for Cell Damage Caused by Oligomer Formation
Abstract It is well known that the formation of amyloid fiber may cause invertible damage to cells, although the underlying mechanism has not been fully understood. In this article, a microscopic model considering the detailed processes of amyloid formation and cell damage is constructed based on four simple assumptions, one of which is that cell damage is raised by oligomers rather than mature fibrils. By taking the maximum entropy principle, this microscopic model in the form of infinite mass-action equations together with two reaction-convection partial differential equations (PDEs) has been greatly coarse-grained into a macroscopic system consisting of only five ordinary differential equations (ODEs). With this simple model, the effects of primary nucleation, elongation, fragmentation, and protein and seeds concentration on amyloid formation and cell damage have been extensively explored and compared with experiments. We hope that our results will provide new insights into the quantitative linkage between amyloid formation and cell damage.
V2 青冥浩荡不见底 声望 1 生理学与生物物理学 2022-01-24 11:51:28 上传
Hypothermic modulation of human cortical neurons to explore a role for tau protein in neuroprotection
Abstract Background Cooling is the single most effective treatment for acute neuronal injury. Understanding the molecular mechanisms that mediate cooling-induced neuroprotection might yield novel therapeutic targets for neurodegenerative disease. Many of these disorders involve modulation of tau, a protein that is enriched in neurons and becomes hyperphosphorylated in hypothermic, injury-resistant rodent brains as well as in Alzheimer's disease. We sought to establish a new model for exploring human tau physiology and its role in neuroprotection in the context of therapeutic hypothermia. Methods Functional cortical neurons (hCNs) were differentiated from three independent human pluripotent stem-cell lines and validated for regional identity and tau status. Matched cultures were incubated at 37°C or clinically targeted temperatures for therapeutic hypothermia (32°C) and suspended animation (28°C). Effects of cooling on tau status and neuronal injury elicited by common neurotoxic stressors were established. Injury experiments were repeated while manipulating tau phosphorylation. Findings hCN differentiation featured transitions in tau status, recapitulating transcriptional and post-translational human in-vivo cortical tau development. Key aspects of this development were reversed by cooling. Notably, cooling induced tau hyperphosphorylation via rapid inhibition of the major tau phosphatase, protein phosphatase 2A (PP2A). Multiplexed injury analysis confirmed that hypothermia robustly protected hCNs from oxidative (100 μM hydrogen peroxide) and excitotoxic (30 μM glutamate) stress (at 28°C, injury was reduced by 78% and 56%, respectively; p<0·0005). Selective block of a major tau kinase reduced hCN tau phosphorylation and abrogated hypothermic protection (p=0·001) against oxidative injury at 28°C (injury reduction diminished to 9% at 100 μM hydrogen peroxide), whereas pharmacological inhibition of PP2A mimicked cooling-induced tau phosphorylation and protected hCNs from oxidative injury at 37°C (up to 22% injury reduction [p=0·008], with no benefit under hypothermic conditions). Interpretation To our knowledge, this is the first study of human neuronal tau physiology under hypothermic conditions. Although definitive experiments are needed, our findings support previous work linking phospho-tau to neuroprotection. Furthermore, cold-induced tau hyperphosphorylation is a potential trigger for proteostatic priming, a recently discovered mechanism of hypothermic preconditioning in hCNs. Exploiting these cryobiological effects might lead to new treatments for acute and chronic neuronal injury. Funding Wellcome Trust, Anne Rowling Regenerative Neurology Clinic, Euan MacDonald Centre for Motor Neurone Disease Research.
V1 邢茂卿 声望 1 动物生物技术 2022-01-24 11:50:22 上传
Cadherin Diffusion in Supported Lipid Bilayers Exhibits Calcium-Dependent Dynamic Heterogeneity
Abstract Ca2+ ions are critical to cadherin ectodomain rigidity, which is required for the activation of adhesive functions. Therefore, changes in Ca2+ concentration, both in vivo and in vitro, can affect cadherin conformation and function. We employed single-molecule tracking to measure the diffusion of cadherin ectodomains tethered to supported lipid bilayers at varying Ca2+ concentrations. At a relatively high Ca2+ concentration of 2 mM, cadherin molecules exhibited a fast diffusion coefficient that was identical to that of individual lipid molecules in the bilayer (Dfast ≈ 3 μm2/s). At lower Ca2+ concentrations, where cadherin molecules were less rigid, the ensemble-average cadherin diffusion coefficient was systematically smaller. Individual cadherin trajectories were temporally heterogeneous, exhibiting alternating periods of fast and slow diffusion; the periods of slow diffusion (Dslow ≈ 0.1 μm2/s) were more prevalent at lower Ca2+ concentration. These observations suggested that more flexible cadherin ectodomains at lower Ca2+ concentration alternated between upright and lying-down conformations, where the latter interacted with more lipid molecules and experienced greater viscous drag.
V5 Tattoo 声望 111 机械工程 2022-01-24 11:20:10 上传
Arresting Amyloid with Coulomb’s Law: Acetylation of ALS-Linked SOD1 by Aspirin Impedes Aggregation
Abstract Although the magnitude of a protein’s net charge (Z) can control its rate of self-assembly into amyloid, and its interactions with cellular membranes, the net charge of a protein is not viewed as a druggable parameter. This article demonstrates that aspirin (the quintessential acylating pharmacon) can inhibit the amyloidogenesis of superoxide dismutase (SOD1) by increasing the intrinsic net negative charge of the polypeptide, i.e., by acetylation (neutralization) of multiple lysines. The protective effects of acetylation were diminished (but not abolished) in 100 mM NaCl and were statistically significant: a total of 432 thioflavin-T amyloid assays were performed for all studied proteins. The acetylation of as few as three lysines by aspirin in A4V apo-SOD1—a variant that causes familial amyotrophic lateral sclerosis (ALS)—delayed amyloid nucleation by 38% and slowed amyloid propagation by twofold. Lysines in wild-type- and ALS-variant apo-SOD1 could also be peracetylated with aspirin after fibrillization, resulting in supercharged fibrils, with increases in formal net charge of ∼2 million units. Peracetylated SOD1 amyloid defibrillized at temperatures below unacetylated fibrils, and below the melting temperature of native Cu2,Zn2-SOD1 (e.g., fibril Tm = 84.49°C for acetylated D90A apo-SOD1 fibrils). Targeting the net charge of native or misfolded proteins with small molecules—analogous to how an enzyme’s Km or Vmax are medicinally targeted—holds promise as a strategy in the design of therapies for diseases linked to protein self-assembly.
V1 Bonaventure 声望 1 遗传学和遗传工程系 2022-01-24 11:10:48 上传
Ionomycin-Induced Changes in Membrane Potential Alter Electroporation Outcomes in HL-60 Cells
Abstract Previous studies have shown greater fluorophore uptake during electroporation on the anode-facing side of the cell than on the cathode-facing side. Based on these observations, we hypothesized that hyperpolarizing a cell before electroporation would decrease the requisite pulsed electric field intensity for electroporation outcomes, thereby yielding a higher probability of reversible electroporation at lower electric field strengths and a higher probability of irreversible electroporation (IRE) at higher electric field strengths. In this study, we tested this hypothesis by hyperpolarizing HL-60 cells using ionomycin before electroporation. These cells were then electroporated in a solution containing propidium iodide, a membrane integrity indicator. After 20 min, we added trypan blue to identify IRE cells. Our results showed that hyperpolarizing cells before electroporation alters the pulsed electric field intensity thresholds for reversible electroporation and IRE, allowing for greater control and selectivity of electroporation outcomes.
V2 在路上 声望 25 2022-01-24 10:47:25 上传
Vinculin Force-Sensitive Dynamics at Focal Adhesions Enable Effective Directed Cell Migration
Abstract Cell migration is a complex process, requiring coordination of many subcellular processes including membrane protrusion, adhesion, and contractility. For efficient cell migration, cells must concurrently control both transmission of large forces through adhesion structures and translocation of the cell body via adhesion turnover. Although mechanical regulation of protein dynamics has been proposed to play a major role in force transmission during cell migration, the key proteins and their exact roles are not completely understood. Vinculin is an adhesion protein that mediates force-sensitive processes, such as adhesion assembly under cytoskeletal load. Here, we elucidate the mechanical regulation of vinculin dynamics. Specifically, we paired measurements of vinculin loads using a Förster resonance energy transfer-based tension sensor and vinculin dynamics using fluorescence recovery after photobleaching to measure force-sensitive protein dynamics in living cells. We find that vinculin adopts a variety of mechanical states at adhesions, and the relationship between vinculin load and vinculin dynamics can be altered by the inhibition of vinculin binding to talin or actin or reduction of cytoskeletal contractility. Furthermore, the force-stabilized state of vinculin required for the stabilization of membrane protrusions is unnecessary for random migration, but is required for directional migration along a substrate-bound cue. These data show that the force-sensitive dynamics of vinculin impact force transmission and enable the mechanical integration of subcellular processes. These results suggest that the regulation of force-sensitive protein dynamics may have an underappreciated role in many cellular processes.
V1 徐梦曦 声望 1 动物资源科学 2022-01-24 10:30:16 上传
The Effect of Fluorophore Conjugation on Antibody Affinity and the Photophysical Properties of Dyes
Abstract Because the degree of labeling (DOL) of cell-bound antibodies, often required in quantitative fluorescence measurements, is largely unknown, we investigated the effect of labeling with two different fluorophores (AlexaFluor546, AlexaFluor647) in a systematic way using antibody stock solutions with different DOLs. Here, we show that the mean DOL of the cell-bound antibody fraction is lower than that of the stock using single molecule fluorescence measurements. The effect is so pronounced that the mean DOL levels off at approximately two fluorophores/IgG for some antibodies. We developed a method for comparing the average DOL of antibody stocks to that of the isolated, cell-bound fraction based on fluorescence anisotropy measurements confirming the aforementioned conclusions. We created a model in which individual antibody species with different DOLs, present in an antibody stock solution, were assumed to have distinct affinities and quantum yields. The model calculations confirmed that a calibration curve constructed from the anisotropy of antibody stocks can be used for determining the DOL of the bound fraction. The fluorescence intensity of the cell-bound antibody fractions and of the antibody stocks exhibited distinctly different dependence on the DOL. The behavior of the two dyes was systematically different in this respect. Fitting of the model to these data revealed that labeling with each dye affects quantum yield and antibody affinity differentially. These measurements also implied that fluorophores in multiply labeled antibodies exhibit self-quenching and lead to decreased antibody affinity, conclusions directly confirmed by steady-state intensity measurements and competitive binding assays. Although the fluorescence lifetime of antibodies labeled with multiple fluorophores decreased, the magnitude of this change was not sufficient to account for self-quenching indicating that both dynamic and static quenching processes occur involving H-aggregate formation. Our results reveal multiple effects of fluorophore conjugation, which must not be overlooked in quantitative cell biological measurements.
V2 文富华 声望 12 生物科学 2022-01-24 10:23:07 上传
Membrane Cholesterol Modulates Superwarfarin Toxicity
Abstract Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.
V2 田可乐小朋友 声望 13 微生物学与微生物工程系 2022-01-24 10:22:05 上传
Laser-Activated Polymeric Microcapsules for Ultrasound Imaging and Therapy: In Vitro Feasibility
Abstract Polymeric microcapsules with a light-absorbing dye incorporated in their shell can generate vapor microbubbles that can be spatiotemporally controlled by pulsed laser irradiation. These contrast agents of 6–8 μm in diameter can circulate through the vasculature, offering possibilities for ultrasound (molecular) imaging and targeted therapies. Here, we study the impact of such vapor bubbles on human endothelial cells in terms of cell poration and cell viability to establish the imaging and therapeutic windows. Two capsule formulations were used: the first one consisted of a high boiling point oil (hexadecane), whereas the second was loaded with a low boiling point oil (perfluoropentane). Poration probability was already 40% for the smallest bubbles that were formed (<7.5 μm diameter), and reached 100% for the larger bubbles. The hexadecane-loaded capsules also produced bubbles while their shell remained intact. These encapsulated bubbles could therefore be used for noninvasive ultrasound imaging after laser activation without inducing any cell damage. The controlled and localized cell destruction achieved by activation of both capsule formulations may provide an innovative approach for specifically inducing cell death in vivo, e.g., for cancer therapy.
点击加载更多