V4
竹林风 声望 45
森林资源类
Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment
作者:John E. Drake . Catriona A. Macdonald . Mark G. Tjoelker . Peter B. Reich . Brajesh K. Singh . Ian C. Anderson . David S. Ellsworth
摘要:The rate of CO2 diffusion from soils to the atmosphere (soil CO2 efflux, soil respiration; Rsoil) reflects the integrated activity of roots and microbes and is among the largest fluxes of the terrestrial global C cycle. Most experiments have demonstrated that Rsoil increases by 20–35% following the exposure of an ecosystem to an atmosphere enriched in CO2 (i.e., eCO2), but such experiments have largely been performed in young and N-limited ecosystems. Here, we exposed a mature and phosphorus-limited eucalypt woodland to eCO2 and measured Rsoil across three full years with a combination of manual surveys and automated measurements. We also implemented an empirical model describing the dependence of Rsoil on volumetric soil water content (h) and soil temperature (Tsoil) to produce annual Rsoil flux estimates. Rsoil varied strongly with Tsoil, h, and precipitation in complex and interacting ways. The realized long-term (weeks to years) temperature dependence (Q10) of Rsoil increased from * 1.6 at low h up to * 3 at high h. Additionally, Rsoil responded strongly and rapidly to precipitation events in a manner that depended on the conditions of h and Tsoil at the beginning of the rain event; Rsoil increased by up to 300% within 30 min when rain fell on dry soil that had not experience rain in the preceding week, but Rsoil was rapidly reduced by up to 70% when rain fell on wet soil, leading to flooding. Repeated measures analysis of Rsoil observations over 3 years indicated no significant change in response to CO2 enrichment (P = 0.7), and elevated CO2 did not alter the dependence of Rsoil on Tsoil or h. However, eCO2 increased Rsoil observations by * 10% under some constrained and moderate environmental conditions. Annual Rsoil flux sums estimated with an empirical model were * 7% higher in eCO2 plots than in aCO2 plots, but this difference was not statistically significant. The lack of a large eCO2 effect on Rsoil is consistent with recent evidence that aboveground net primary production was not stimulated by eCO2 in this ecosystem. The C budget of this mature woodland may be less affected by eCO2 than Responsible Editor: Egbert Matzner. Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10533-018-0457-7) contains supplementary material, which is available to authorized users. J. E. Drake  C. A. Macdonald  M. G. Tjoelker  P. B. Reich  B. K. Singh  I. C. Anderson  D. S. Ellsworth Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia J. E. Drake (&) Department of Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, 1 Forestry Dr, Syracuse, NY, USA e-mail: jedrake@esf.edu P. B. Reich Department of Forest Resources, University of Minnesota, St. Paul, MN, USA 123 Biogeochemistry https://doi.org/10.1007/s10533-018-0457-7the young N-limited ecosystems that have been studied previously.
关键词:Carbon dioxide  Carbon cycle  Soil respiration  Soil CO2 efflux  Mathematical model
论文方向:
发表期刊:
数字识别码:10.1007/s10533-018-0457-7)
是否作者本人:

版权及免责声明:

本网站所有论文文件均系用户自行上传或提供,本网站对其内容准确性及合法性概不负责,亦不承担任何法律责任。论文版权归原作者及原出处所有。

如您发现网站其他用户上传的论文有侵犯您的姓名权、隐私权、著作权或其他合法权益现象的,请及时与本网站联系并附加相关权利证明文件,以便本网站及时作出处理,维护您的合法权益。

本网站拥有对此声明的最终解释权。

全部评论 ( 0 )

发评论
5.0/10分

0人评分